Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Serum tyrosine and phenylalanine levels increase during aging and age-associated disorders. We previously showed that tyrosyl-tRNA synthetase (TyrRS/YARS1) is reduced in Alzheimer's Disease (AD) brains, and tyrosine and phenylalanine decrease TyrRS in neurons. Here, we found that tau is a negative regulator, whereas estrogen and leucine act as positive regulators of TyrRS. Young female mice exhibit increased TyrRS in the cortex compared to male mice. Notably, young Tau knockout male, but not female mice showed increased cortical TyrRS. Tau accumulation in middle-aged female mice did not decrease cortical TyrRS compared to males, suggesting that middle aged females are resilient to tau-mediated TyrRS depletion. Tyrosine and phenylalanine treatment decreased tubulin tyrosination, activated DNA repair pathways, and protected against etoposide (ETO) and camptothecin (CPT)-induced toxicity, respectively, in neurons. While tyrosine facilitated topoisomerase 1 (TOP1) recruitment to chromatin and inhibited global transcription, in contrast, phenylalanine recruited topoisomerase 2 beta (TOP2β) to chromatin and stimulated global transcription. Furthermore, tyrosine decreased the presence of DNA fragments in a comet assay whereas phenylalanine increased them. Addition of cis-resveratrol (cis-RSV) protected against tyrosine-induced transcription inhibition by facilitating the recruitment of both TOP1 and TOP2β to chromatin and increasing tubulin tyrosination. Moreover, cis-RSV decreased both total and phosphorylated tau and protected neurons against amyloid beta (Aβ)-induced neurite degeneration and DNA damage. Gene expression profiling using human embryonic stem cell (hESC)-derived neurons demonstrated that cis-RSV is a broad-spectrum neuroprotective and anti-viral agent. In contrast, trans-RSV mimics phenylalanine-induced gene expression, including downregulation of long genes and induction of an AD-like gene expression signature. This work suggests that age and disease-associated increases in serum tyrosine and phenylalanine levels would activate neuronal DNA repair while inhibiting transcription and tubulin tyrosination. cis-RSV protects against their toxicity by restoring tubulin tyrosination, TOP1 and TOP2β-mediated transcription, and decreasing tau in primary neurons.more » « lessFree, publicly-accessible full text available June 6, 2026
-
Free, publicly-accessible full text available July 1, 2026
-
DeMartino, George (Ed.)Tauopathies are neurodegenerative disorders characterized by the deposition of aggregates of the microtubule-associated protein tau, a main component of neurofibrillary tangles. Alzheimer’s disease (AD) is the most common type of tauopathy and dementia, with amyloid-beta pathology as an additional hallmark feature of the disease. Besides its role in stabilizing microtubules, tau is localized at postsynaptic sites and can regulate synaptic plasticity. The activity-regulated cytoskeleton-associated protein (Arc) is an immediate early gene that plays a key role in synaptic plasticity, learning, and memory. Arc has been implicated in AD pathogenesis and regulates the release of amyloid-beta. We found that decreased Arc levels correlate with AD status and disease severity. Importantly, Arc protein was upregulated in the hippocampus of Tau KO mice and dendrites of Tau KO primary hippocampal neurons. Overexpression of tau decreased Arc stability in an activity-dependent manner, exclusively in neuronal dendrites, which was coupled to an increase in the expression of dendritic and somatic surface GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. The tau-dependent decrease in Arc was found to be proteasome-sensitive, yet independent of Arc ubiquitination and required the endophilin-binding domain of Arc. Importantly, these effects on Arc stability and GluA1 localization were not observed in the commonly studied tau mutant, P301L. These observations provide a potential molecular basis for synaptic dysfunction mediated through the accumulation of tau in dendrites. Our findings confirm that Arc is misregulated in AD and further show a physiological role for tau in regulating Arc stability and AMPA receptor targeting.more » « less
-
Dietary restriction of the essential amino acid, methionine, has been shown to induce unique metabolic protection. The peripheral benefits of methionine restriction (MR) are well established and include improvements in metabolic, energy, inflammatory, and lifespan parameters in preclinical models. These benefits all occur despite MR increasing energy intake, making MR an attractive dietary intervention for the prevention or reversal of many metabolic and chronic conditions. New and emerging evidence suggests that MR also benefits the brain and promotes cognitive health. Despite widespread interest in MR over the past few decades, many findings are limited in scope, and gaps remain in our understanding of its comprehensive effects on the brain and cognition. This review details the current literature investigating the impact of MR on cognition in various mouse models, highlights some of the key mechanisms responsible for its cognitive benefits, and identifies gaps that should be addressed in MR research moving forward. Overall findings indicate that in animal models, MR is associated with protection against obesity-, age-, and Alzheimer’s disease-induced impairments in learning and memory that depend on different brain regions, including the prefrontal cortex, amygdala, and hippocampus. These benefits are likely mediated by increases in fibroblast growth factor 21, alterations in methionine metabolism pathways, reductions in neuroinflammation and central oxidative stress, and potentially alterations in the gut microbiome, mitochondrial function, and synaptic plasticity.more » « less
-
Gordon Holmes syndrome (GHS) is a neurological disorder associated with neuroendocrine, cognitive, and motor impairments with corresponding neurodegeneration. Mutations in the E3 ubiquitin ligaseRNF216are strongly linked to GHS. Previous studies show that deletion ofRnf216in mice led to sex-specific neuroendocrine dysfunction due to disruptions in the hypothalamic–pituitary–gonadal axis. To address RNF216 action in cognitive and motor functions, we testedRnf216knock-out (KO) mice in a battery of motor and learning tasks for a duration of 1 year. Although male and female KO mice did not demonstrate prominent motor phenotypes, KO females displayed abnormal limb clasping. KO mice also showed age-dependent strategy and associative learning impairments with sex-dependent alterations of microglia in the hippocampus and cortex. Additionally, KO males but not females had more negative resting membrane potentials in the CA1 hippocampus without any changes in miniature excitatory postsynaptic current (mEPSC) frequencies or amplitudes. Our findings show that constitutive deletion ofRnf216alters microglia and neuronal excitability, which may provide insights into the etiology of sex-specific impairments in GHS.more » « less
-
Synaptic plasticity relies on rapid, yet spatially precise signaling to alter synaptic strength. Arc is a brain enriched protein that is rapidly expressed during learning-related behaviors and is essential for regulating metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD). We previously showed that disrupting the ubiquitination capacity of Arc enhances mGluR-LTD; however, the consequences of Arc ubiquitination on other mGluR-mediated signaling events is poorly characterized. Here we find that pharmacological activation of Group I mGluRs with S-3,5-dihydroxyphenylglycine (DHPG) increases Ca2+release from the endoplasmic reticulum (ER). Disrupting Arc ubiquitination on key amino acid residues enhances DHPG-induced ER-mediated Ca2+release. These alterations were observed in all neuronal subregions except secondary branchpoints. Deficits in Arc ubiquitination altered Arc self-assembly and enhanced its interaction with calcium/calmodulin-dependent protein kinase IIb (CaMKIIb) and constitutively active forms of CaMKII in HEK293 cells. Colocalization of Arc and CaMKII was altered in cultured hippocampal neurons, with the notable exception of secondary branchpoints. Finally, disruptions in Arc ubiquitination were found to increase Arc interaction with the integral ER protein Calnexin. These results suggest a previously unknown role for Arc ubiquitination in the fine tuning of ER-mediated Ca2+signaling that may support mGluR-LTD, which in turn, may regulate CaMKII and its interactions with Arc.more » « less
-
Abstract Multi‐scale calcium (Ca2+) dynamics, exhibiting wide‐ranging temporal kinetics, constitutes a ubiquitous mode of signal transduction. We report a novel endoplasmic‐reticulum (ER)‐targeted Ca2+indicator, R‐CatchER, which showed superior kinetics in vitro (koff≥2×103 s−1,kon≥7×106 M−1 s−1) and in multiple cell types. R‐CatchER captured spatiotemporal ER Ca2+dynamics in neurons and hotspots at dendritic branchpoints, enabled the first report of ER Ca2+oscillations mediated by calcium sensing receptors (CaSRs), and revealed ER Ca2+‐based functional cooperativity of CaSR. We elucidate the mechanism of R‐CatchER and propose a principle to rationally design genetically encoded Ca2+indicators with a single Ca2+‐binding site and fast kinetics by tuning rapid fluorescent‐protein dynamics and the electrostatic potential around the chromophore. The design principle is supported by the development of G‐CatchER2, an upgrade of our previous (G‐)CatchER with improved dynamic range. Our work may facilitate protein design, visualizing Ca2+dynamics, and drug discovery.more » « less
An official website of the United States government
